
Promise is Debt

Marc Evers & Willem van den Ende

© 2008 Piecemeal Growth & Living Software B.V.

February 6, 2008

In this paper, we present the “Promise is Debt” pattern through the story of
a team that gets stuck in a vicious circle of making promises to their
customers, working hard trying to fulfil the promises, and making new
promises when they fail.

Using systems thinking and diagrams of effects we uncover the dynamics of
Promise is Debt. This helps to find the underlying causes and to break
vicious circles.

The example is based on our experiences with organizations developing
software and stories from participants of our workshops.

Introduction
Did you ever...

...feel you have no grip on the situation?

...try to solve problems but the team seems to be stuck in a vicious circle?

...put out fire after fire, where putting out one fire seems the ignite the next
one?

In this paper, we describe a recognizable story from our experience – a team
making promises to their customer in such a way that it becomes almost
impossible to fulfil them... This creates a downward spiral of making
promises, breaking promises, and making new promises to compensate the
customers' disappointment. In the end, both the team and customers lose
trust and the team loses its credibility.

We will show what the root causes are and how you can really solve the
problem, using systems thinking with diagrams of effects.

Systems thinking is an approach where a (part of an) organisation or project
is seen in terms of variables that influence each other. Systems thinking
focuses on the interdependence of parts instead of linear cause-effect
relations. It is about seeing the whole and about dynamics and change, with
feedback playing an essential role.

Systems thinking helps to make mental models of different stakeholders
explicit and to see not-so-obvious effects and self-reinforcing loops. This
makes it easier to find effective interventions.

Contents
Introduction...2
The story...3

What's the matter?..3
Mission accomplished..4
The next release...5
Better luck next time...5
On the way up?..6
Or on the way down?..6

Doomed to fail?..7
Possible interventions...8
Conclusions..9
References...10
Authors..11

2

The story
Once upon a time ... there was a small IT organisation, consisting of a few
developers (Paul, Mary, and Martin) and Jeff, the group's manager. Jeff does
marketing and sales as well.

They have been working for over a year now on 'their' product, an
Innovative Web System (IWS). They already have three customers – Angela,
Fred, and Brian. The IWS product is partially generic, to keep maintenance
costs down. They provide a number of custom-built features for each
customer, because the team values 'customer intimacy' and likes to use
feedback to improve IWS further and make it attractive for more customers.

All three customers are enthusiastic: they see the system's possibilities,
although it currently doesn't meet all their requirements yet. Each customer
still needs specific functionality, but they're confident that the team is going
to deliver it.

Because the team works with short monthly releases, the customers
continuously see progress. Some releases show more progress than others,
but the product as a whole grows steadily.

What's the matter?
The developers have just finished doing a release. They have delivered
almost everything they had planned. A new plan has been created for the
next release. As a team, they have a working agreement that for the next
release, they won't promises more features than they actually delivered in
the previous release. Every feature is estimated by assigning a number of
feature points. The number of feature points finished during the previous
release – their velocity – is the maximum number they can plan for the next
release.

During the most recent planning session, Jeff tried to persuade the team
into promising an extra feature, but the team held firm. “Let's just do what
is realistic. If we go faster than expected, we can always add some extra
features. That is better than promising too much and then failing to deliver,”
according to Martin.

In the morning of the second day after they started working on the new
release, Jeff enters the development room: “Yesterday, I have talked to
Ronald again, and I finally managed to convince him! Our fourth customer! I
had to promise him feature FR53i however. He insisted that we build it
specifically for his organisation and deliver it this release.”

“But we have already planned enough for this release and this FR53i
feature is a lot of work, at least 8 feature points!” objects Mary.

“This customer is of strategic importance! Ronald is someone who will start
selling the system to others once he is convinced. That will get us a lot of
extra customers and sales. We just have to work a little harder this release,
and then everything will work out!”

“Then we will have to cut corners, I strongly doubt whether the code quality
will remain acceptable,” says Paul reluctantly, "I'm afraid we will experience
defects that will be hard to track down."

“No problem, you can just refactor a bit extra during the next release and
everything will be all right. I see you all understand the importance of going
the extra mile, so then it's a deal!” Jeff quickly leaves for his office.

3

The developers have their doubts, but they have also become enthusiastic
about getting a fourth customer on board. Ronald is a difficult person to
persuade, having him on board is quite a big thing. So everyone works their
asses off to build the extra feature on time. Towards the end of the release,
pressure and overtime increase....

If the customer is not satisfied enough, Jeff decides to promise extra
features. The promises raise the customer's expectations. To meet these
expectations, Jeff plans the extra features. The above diagram of effects
shows this dynamic: the circles and clouds contain variables, the edges
show causality relations.

Variables are properties of the system that we can observe (clouds) or
measure (circles). Causality can work in the same or in the opposite
direction (the latter indicated by the dot on the edge). If for example the
number of features promised increases, customer expectations also
increase. If customer satisfaction decreases, the number of features
promised increases.

The pizzas that Jeff brings in at evenings make up for much. The feeling of
doing something important, pleasing a customer, and being part of a close
team gives a kick.

They do cut corners and they're not satisfied with the quality of their work.
Fortunately, they will be able to make up for it during the next release, for
instance by adding quite a few missing unit tests later.

Mission accomplished...
The release is successful, all planned features as well as feature FR53i have
been completed. Everyone is tired and stressed out. Jeff drops by in the
development room: “Well done! I told you so: you're able to do more than
you think. I'm proud of you all!”

At the next planning meeting, the team has trouble restricting the number of
features to be scheduled. Jeff would like to schedule as much work as they
just delivered: 29 feature points. Martin sticks to his guns: “The high velocity
is distorted: although we completed more, we didn't do it in a sustainable
way. We have put in a lot of overtime, skipped unit testing and refactoring,
and didn't do any code reviews. I don't know how long we can keep going
like this. Moreover, Jeff, you promised us extra time during this release to
catch up with all the corners we've cut. One release earlier, we completed 21
feature points. This time we did 6 feature points extra. So now we can only
promise 21 minus 6 is 15 feature points, to keep things sustainable. We can

4

Features promised

Customer satisfaction

Planned
features

Customer
expectations

probably do a bit more, but let's be sensible and work in a way we can
sustain over time.”

Jeff gives in, reluctantly.

The next release
Work starts slowly. The team requires time to recover and is hardly
productive during the first week. They try to repair some of the corners they
cut, but they're just too tired too accomplish much. In the second week,
with some pressure from Jeff, they start working on the planned features.
Slowly they get up to speed.

Then the different customers start reporting defects. Over the last year, they
had only 2 or 3 defects in each release, now they suddenly have 4 defects in
a week. They also receive an angry e-mail from Ronald who has found a
nasty bug, explicitly stating his annoyance. The team immediately starts
solving the defects, to prevent losing Ronald as their customer.

Because of the large workload and the pressure that Jeff puts on the
team, the developers are more inclined to cut corners and choose quick
and dirty solutions, thinking they'll catch up later. This causes more and
more design debt as well as more defects introduced by working this
way. More defects lead to lower customer satisfaction.

By the end of the release, they are significantly behind. They still try to
complete as much as possible, but they eventually deliver only half of what
they had planned: 11 feature points. Their customers are slightly
disappointed.

Better luck next time
Ronald begins to openly express his doubts about the system. Jeff quickly
pays him a visit in an attempt to placate him. “We just had some bad luck
this time, the developers had a touch of flu at the start of the release, and

5

Features
promised

Customer satisfaction

Customer
expectations

Planned
features

Workload

Defects
Pressure to

deliverCorners cut

Design
debt

then things just went a bit slowly. I've talked to them sternly, so trust me,
they will do a better job next time. We will make sure that the next release
also includes feature 8RTv91x, with the HH05 extension.

Ronald decides to give them another chance. Jeff also visits the other
customers and assures them that the defects and the non-delivery of
features were only incidents. Next time, everything will go as planned.

Jeff pressures the team to complete 8RTv91x in the next release – failure is
not an option! He schedules a series of features all labelled as “essential”.
The team members notice that the amount of planned work is much more
than the velocity of the previous release (26 points); it is even more than
their velocity from the time they didn't have all these problems. They
submit: they know in their hearts they won't succeed, but believe they have
no choice.

On the way up?
The team members notice that the new features take them longer. The quick
and dirty solutions they used for the previous releases are a royal pain in the
ass. It takes more and more time to understand their own code, to add unit
tests, and to find causes of defects. Meanwhile, new defects keep on coming
in, most of them in the new features they delivered recently. After Jeff's
lecture, they primarily focus on feature 8RTv91x. They manage to complete
it, at the cost of other features. They only finish 13 feature points worth of
work this release.

This time, Ronald is partially satisfied: “I'm glad you have finished 8RTv91x,
but I expected the x80y8 to be finished as well, that's what Jeff promised.”
The other customers start complaining. “You have underdelivered, again! It's
as if bugs are the only thing you people deliver these days...” Fred sighs in
frustration.

“We will schedule x80y8 right now!” Jeff promises to Ronald. To the other
customers he says: “I'll have a firm chat with the team, I completely agree
with you, things can't go on like this. The next release will be all right, we
will deliver Xnrg-4.5.4 as well.” He knows all three customers are dying
for that feature.

Jeff calls the team together in a conference room: “We need to work hard to
regain the trust of our customers. I know you can do it, don't disappoint me!
Just leave out refactoring, we don't have time for that. I get the impression
that testing doesn't really contribute to productivity either. If everyone just
builds features, everything is going to be all right.” He proceeds: “Now that
this is clear, here's the schedule for the next release, including x80y8 and
Xnrg-4.5.4. It's 24 feature points all together, that shouldn't be a
problem, because you have done 29 once. I think your points are also
subject to inflation, so it's ok to add some. Well, we've spent enough time in
this meeting, let's get back to programming now, so that we can make our
customers happy.”

Or on the way down?
The same thing happens for this release: completing features costs more
and more time because of design debt. New defects keep on coming in, now
predominantly caused by hasty fixes to previous defects. The team slowly
loses its motivation. They try to rush through the features, to prevent being
blamed by Jeff. When the release is over, the velocity turns out to be 11, or
10, because for 1 feature, they don't agree whether it's finished or not.

6

When Ronald tries out the x80y8 feature he has been dying for, it works,
but only partially. And the part that is least important to him is functional.

“This is the limit!” he screams at Jeff, “No more IWS for me!” He announces
his decision loud and clearly, to everyone who wants to hear it.

After some time, the design debt starts having a noticeable effect on the
time needed to solve defects or to build a new feature. The probability
that promises will be fulfilled within the time estimated decreases. Not
delivering what you've promised causes lower customer satisfaction.

This system contains two self-reinforcing loops: promising extra features
indirectly causes even lower customer satisfaction. The system is not
stable. Eventually, customers and developers will leave.

At the coffee machine, Angela meets Mary. Mary looks tired. “It's not going
well with IWS, in my opinion,” says Angela. “Indeed” says Mary, “I'm sorry
for how things are going.”

“No problem, it won't bother us much longer. We're looking around for a
replacement system and we have identified two suitable candidates. I feel
sorry for you, I've always liked collaborating with the developers.”

“Well, I'm also almost finished with this,” Mary says, “I had a talk at QXD
yesterday. They have a job that suits me better, I'll start next month.”

“Congratulations! Too bad for IWS, but I'm happy for you!”

Doomed to fail?
If we plot work completed against time, we get the burndown chart shown
below. The solid line indicates the amount of work remaining, the slope of
the line is indicative for the velocity. The dotted line represents the
expectations based on the initial velocity. If the solid line deviates from the

7

Probability that
promises will be

fullfilled

Design
debt

Corners cut Pressure
to deliver

Defects

Workload
Customer satisfaction

Features promised Customer
expectations

Planned
features

Time needed for defects
and new features

dotted line, then this is ground for further investigation and possible
interventions.

In the first release, the team delivers what is expected. After that, however,
the team delivers less and less. What causes this? What can we do to finish
all the work in the near future?

The diagrams of effects give us insight into the underlying dynamics. How
does this help us? More specifically, what does it tell us about possible
interventions? We could for instance promise less or more features, vary the
amount of scheduled work, or vary the amount of pressure on the team. In
terms of the model, this means changing the values of variables.

If we would only change the values of variables, but keep the loops, the
system remains inherently unstable. We have seen in practice that despite
the instability, the system can continue to exist for quite some time:

✗ customers don't have a choice – at least, that's what they think – and
give the team another chance, again and again,

✗ customers are afraid to speak up and and put up with this way of
working for a long time,

✗ the product is not that important for the customer, so the impact of the
problems is small,

✗ despite everything, the developers try to make the best of it; perhaps it
would be wise to let things escalate early, but that goes against
everyone's feeling of pride, professionalism, and craftsmanship.

Sooner or later however, things will go awry and the system will collapse:
customers run away, people get burned out, developers leave.

Possible interventions
The cause-effect relations we found between the different variables are not
all “laws of nature” or carved in stone: some represent an implicit or explicit
choice – a management decision. The relation between customer
satisfaction and extra features promised is an example of this – if the
customer satisfaction drops, it is up to the team and Jeff to decide if they
want to promise extra features or not.

There are more places in the system where there is a choice:

✔ the amount of pressure that Jeff puts on the system; it is not sufficient
to only intervene here, because the vicious circle remains intact;

8

Release 1 Release 2 Release 3 Release 4

✔ the number of extra features actually scheduled trying to satisfy the
customer;

✔ the extent to which developers choose to work in a quick and dirty way
when the pressure and the workload increase.

We have indicated these management decisions in the diagram below using
squares. Each square represents a choice where the people involved choose
explicitly if there is a positive or negative effect, or no effect at all.

By making your mental models and assumptions explicit in this way and by
discussing them, you will see the available choices as well as those choices
that make a structural change to the system dynamics.

Make sure not to overload the team. This is not easy once the system has
started spiralling down the vicious circle: the team has to take a step back
and lower their expectations. You know that you are going to disappoint one
or more customers. It's better to do this consciously, instead of just letting it
happen. You are going to have to take your medicine sometime. After that,
you can make sure customer expectations remain realistic. You might lose a
customer, but the alternative is much less attractive.

On the other hand, be careful with promising too little and exceeding
expectations by far: this bears the risk that customers will expect you to
always deliver much more than you promise...

Conclusions
The “Promise is Debt” pattern, where someone overpromises to compensate
for current problems, assuming they will catch up later, usually defeats its
purpose. Cutting corners appears attractive, but is counter-productive. The
problem is that the effects are not immediately visible. Cause and effect are
indirectly linked, separated in time, and influence each other mutually.

The combination of overpromising and cutting corners induces a vicious
circle. The team slips into a destructive spiral of cutting more corners,
delivering less and promising more.

9

Time needed for defects
and new features

Planned
features

Customer
expectationsFeatures promised

Customer satisfaction

Workload

Defects
Pressure
to deliver

Corners
cut

Design
debt

Probability that
promises will be

fullfilled

We have observed this spiral in several different organizations. If it occurs,
its causes are usually systemic and cannot be attributed to specific
individuals. Looking for a scapegoat is pointless and will only reinforce the
vicious circle.

Manipulation, in this case by Jeff, makes it difficult for people to say no or
even to be aware of the fact that saying no is an option. Saying no should
always be an option for every person involved. In fact, creating a culture
where a grounded no at all levels is appreciated, is one of the most cost-
effective interventions higher level management can make.

Learning to observe well as a team and using diagrams of effects, help to
make these indirect effects and vicious circles visible and solvable.

References
Gerald M. Weinberg, Quality Software Management, volumes 1-4 (Systems
Thinking, First Order Measurement, Congruent Action, Anticipating Change)

In depth application of systems thinking to all kinds of problems in
software organisations.

Peter M. Senge, The Fifth Discipline: The Art & Practice of the Learning
Organization, 1994

Senge applies systems thinking to learning organisations. He
discusses, among other things, causal loop diagrams and a number
of archetypes – recurring systemic patterns.

Donella H. Meadows, Places to intervene in a system, in: Whole Earth
Magazine Winter 1997

www.developerdotstar.com/mag/articles/places_intervene_system.html

Essay providing an overview of different ways of intervening is a
system.

systemsthinking.net

Portal containing a wiki and a weblog aggregator, with writings
from different systems thinkers within IT.

Ward Cunningham, OOPSLA '92 Experience Report - The WyCash Portfolio
Management System, March 26, 1992 – www.c2.com/doc/oopsla92.html

First paper we know of on design debt.

Ward Cunningham, Ron Jeffries, and others, Technical Debt -
www.c2.com/cgi/wiki?TechnicalDebt

Discussion with examples on how technical debt accumulates in
projects.

10

http://www.developerdotstar.com/mag/articles/places_intervene_system.html
http://www.c2.com/cgi/wiki?TechnicalDebt
http://www.c2.com/doc/oopsla92.html
http://systemsthinking.net/

Authors

Marc Evers (Piecemeal Growth)

Marc works as an independent coach, trainer, and consultant in the field of
(agile) software development and software processes. Marc develops true
learning organizations that focus on continuous reflection and improvement:
apply, inspect, adapt.

Marc also organizes workshops and conferences on agile and lean software
development, extreme programming, systems thinking, theory of
constraints, and effective communication. He is co-founder of the Agile Open
and XP Days Benelux conferences.

Marc knows how to combine his real-world experience with knowledge that
is out there to create novel solutions. He likes to add games to his highly-
rated workshops, so participants have fun and learn from experience.

Phone: +31 6 44 55 000 3

Website: www.piecemealgrowth.nl

E-mail: marc@piecemealgrowth.nl

Willem van den Ende (Living Software BV)

Willem van den Ende is a Dutch eXtreme Programming pioneer. Since 1999
he guides organisations in the introduction of Agile Software development as
an all-hands person: coach, developer and facilitator. Always active in the
local and international community, he currently serves as board member of
the Agile Alliance, host of systemsthinking.net and the European Agile Open
conferences. Willem is an appreciated workshop facilitator at practitioners'
conferences like XP(Day), Software Practice Advancement and Agile200*.

Willem's sharp vision, his broad knowledge, and twenty years of experience
as programmer and coach enable him to adopt a very flexible and
improvising attitude during workshops. He has the ability to let people see
things differently.

Phone: +31 6 413 06 965

Website: www.livingsoftware.nl

E-mail: willem@livingsoftware.nl

Would you like to know what systems thinking (and doing!) can do for you
and your organisation? We look forward to helping you, for example through
a workshop or mentoring. Feel free to contact us.

11

mailto:willem@livingsoftware.nl
http://www.livingsoftware.nl/
http://www.agile2007.org/
http://www.spaconference.org/
http://www.agileopen.net/
http://www.systemsthinking.net/
http://www.agilealliance.org/
mailto:marc@piecemealgrowth.nl
http://www.piecemealgrowth.nl/
http://www.xpday.net/
http://www.agileopen.net/
http://www.satirworkshops.com/
http://marc.piecemealgrowth.net/systems_thinking.html

